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Abstract— Regular expression matching becomes indispens-
able elements of Internet of Things network security. How-
ever, traditional ternary content addressable memory (TCAM)
search engine is unable to handle patterns with wildcards, as it
precisely tracks only one active state with single transition.
This paper proposes a promising simultaneous pattern matching
methodology for wildcard patterns by two separated engines
to represent discrete finite automata. A key preprocessing to
encode possible postfix pattern by a unique key ensures that
follow-up patterns can accurately traverse all possible matches
with limited hardware resources. This approach is practical
and scalable for achieving good performance and low space
consumption in network security, and it can be applicable to
any regular expressions even with multiwildcard patterns. The
experimental results demonstrate that this scheme can efficiently
and accurately recognize wildcard patterns by simultaneously
tracking only two active states. By adopting SRAM TCAM in
the proposed architecture, the energy consumption is reduced
to around 39%, compared with the energy consumption using
a computing system that contains a large memory lookup and
comparison overhead.

Index Terms— Deep packet inspection (DPI), discrete finite
automata (discrete-FA), network security, simultaneous pattern
matching, ternary content addressable memory (TCAM) based
search engine, wildcard pattern matching.

I. INTRODUCTION

W ITH the recent rapid increase in the popularity of
Internet of Things (IoT) in electronic systems, security

of networks has become a critical challenge because numerous
small networks merge into large networks [1]–[3]. At the same
time, limited hardware resources such as communication chan-
nels/interfaces, bandwidth, storage, and energy cause various
potential vulnerabilities [4]–[6]. An efficient design for deep
packet inspection (DPI) is an indispensable element because
the security problems will be a key factor in IoT development.

In the existing pattern matching methods of DPI, regular
expression matching algorithms are widely used in networking
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Fig. 1. Architecture of firewall router [12].

devices [7], [8]. These algorithms are expressive, efficient, and
flexible in detecting attacks because the payload of packets
can be examined, regardless of whether any predefined reg-
ular expressions are matched by regular expression match-
ing algorithms [9]–[11]. They perform intrusion detection,
attack detection duties, and provide antivirus defense such
as firewalls in layer-7 switches [12], [13]. Fig. 1 shows that
a virus detection computing system, called memory lookup
implementation, is implemented by the processor and memory
in the firewall router to check the payload to confirm that the
connection is secure. However, the disadvantage of this archi-
tecture is its sequential comparison operations and memory
access.

Recently, ternary content addressable memory (TCAM)
based search engines have been used to implement regular
expression matching algorithms to utilize their parallel com-
parison and “don’t care (X)” search abilities to achieve high
speeds [14], [15]. In this architecture, the state machine of
regular expression can be efficiently implemented because
the number of transitions in the state machine is equal to
the number of TCAM entries. In addition, the patterns that
spread across multiple packets in a flow can be monitored by
TCAM-based search engines because they run a unique state
machine for each flow [15], [16].

Unfortunately, TCAM-based search engines cannot be
used to recognize wildcard patterns, which are restricted by
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precisely one active state for tracking and one state transition
lookup. Detecting the match of unpredictable input strings in
wildcard patterns is in fact the most critical challenge because
the nondeterministic nature of wildcard patterns results in
a large number of possible matches. Therefore, restrictions
on the search operation in the architecture and unpredictable
match strings are the major issues in this paper.

Based on the above observations, we propose an efficient
separated TCAM search engine employing a clever simulta-
neous pattern matching methodology that uses discrete finite
automata (discrete-FA) for wildcard-pattern matching prob-
lems. A key challenge of this design lies in having accurate
traversal and traversing all possible matches in an arbitrary
number of characters that appear from a wildcard. In this
paper, we present algorithm/architecture codesign techniques
that can be used in hardware implementation, to recognize
whether input strings and wildcard patterns match with lim-
ited hardware resources. We address several design issues,
including how to design the search engines using TCAM for
wildcard pattern matching, how to construct the discrete-FA
for the predefined patterns, and how to detect the match of
input strings that have accurate traversal and traverse all match
possibilities. In summary, the primary contributions of this
paper are as follows.

1) We propose an efficient separated TCAM search
engine architecture and a simultaneous pattern match-
ing methodology utilizing TCAM features to detect all
possible matches with limited hardware resources, which
resolve the nondeterministic nature of wildcard patterns
that cause a large amount of possible potential matches.
This technique does not alter the data flow during search
execution.

2) We construct discrete-FA by dividing a regular expres-
sion with wildcards to recognize wildcard patterns,
thereby enabling simultaneous search. This technique
resolves the problem of wildcard pattern matching with
limited hardware resources and does not require signif-
icant architectural modification.

3) We reduce the nondeterministic number of active states
from O(N), where N is the number of wildcard patterns,
to O(1) in wildcard pattern matching by simultaneous
tracking only two active states with two transitions.

4) We present a cluster encoding method to significantly
reduce the key size and resolve ambiguity problems in
the key assignment, thereby enabling TCAM capacity
reduction for wildcard pattern matching in the proposed
work.

II. LIMITATIONS OF HARDWARE SEARCH ENGINES

In this section, we first explore the negative effect of the
number of active states and point out that nondeterministic
finite automata (NFA) based methods that use multiple active
states in a hardware search engine are unsuitable. Then,
we describe the basic operations of traditional TCAM-based
search engines and use the “don’t care (X)” features of TCAM
to compress data entries. We then construct state machines for
wildcard patterns in traditional TCAM-based search engines
and identify the unsuitability of these search engines in

Fig. 2. Active state evaluations of NFA.

recognizing wildcard patterns. Finally, by implementing the
traditional TCAM-based search engines for a practical case,
we analyze the shortcomings of wildcard pattern matching
across an input scenario.

A. Why Limit the Number of Active States?

Regular expressions are typically implemented by two
classic finite automata (FA): deterministic FA (DFA) and NFA.
However, neither is ideal for implementation in the hardware
search engine with limited resources for real-world pattern
sets. Previous studies have shown that the NFA-based methods
can recognize wildcard patterns in regular expression matching
algorithms [17], [18]. In such methods, a drawback is that
multiple states are active in parallel for tracking all possible
potential matches. To make state transitions for processing
input character, the number of active states implies the number
of memory access required. Therefore, if wildcard patterns are
recognized, then to have accurate traversal, multiple memory
access with multiple active states must be used to detect two
possible match situations. One possibility is that the following
input string matches with the follow-up of the wildcard pattern
that is recognized and another possibility is that the following
string is matched with some other predefined patterns.

In our observations, as shown in Fig. 2, we find that the
number of active states increases with the number of wildcard
patterns, indicating that an unpredictable number of active
states are required to detect all possible matches concurrently.
This causes each input character requires more than one search
in the wildcard pattern matching process and then results
in O(N) memory access and computation to examine each
character in the payload, where N is the number of active
states in the automata. The input character is difficult to detect
immediately because of the number of active states, which
considerably increases overhead in search operations with a
large number of sequential memory access and computations.
In addition, with the limited hardware resources, such as
bandwidth, storage and the number of processors, the non-
deterministic computation, and memory access overhead of
NFA-based methods will slow matching speed at run time.
Therefore, NFA-based methods are not suitable to implement
in the embedded systems because of the multiple active states.

In contrast, although DFA only requires a single memory
access to process each character in the payload, it is impossible
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Fig. 3. Traditional TCAM-based search engines. (a) Traditional TCAM-based search engine architecture. (b) DFAs for patterns: {her, she, his, hers} and
partial TCAM/Memory entries in traditional TCAM search engines.

to construct the DFA consisting of all possible potential situ-
ations for the wildcard pattern matching. This is because the
number of states and transitions in the DFA are exponentially
larger than that in the NFA [19], [20].

The construction of a hybrid FA (hybrid-FA) has been
proposed to reduce memory storage by combining the benefits
of DFA and NFA [21], [22]. However, unlimited activations of
these approaches for traversing all possible matches also turns
out to be a major constraint. Given an input character, these
prior approaches usually require many concurrent comparison
operations and memory access, which leads to performance
degradation. More importantly, these approaches have focused
on how to reduce memory requirements and mitigate the
impact of state explosion. In contrast, the main idea of our
work is to utilize the parallel search ability of TCAM to avoid
sequential memory access and, thus, limit the number of active
states because it is impossible to have unlimited comparison
units for multiple active states.

B. Traditional TCAM-Based Search Engines

Fig. 3(a) shows that the TCAM-based search engine
architecture consists of three major components: a TCAM
array, a priority encoder, and a memory array [16]. The data
of each TCAM entry consist of the current state and an input
character, which is used to search for state transition. In a
search operation, the search data are stored in the input register
and the current state register is initialized to state 0. If the
search data matches the state and input character in the TCAM
array, the index of the matching entry is given as the output by
the priority encoder, and the next state information is obtained
from the memory array.

Multiple entries can be concurrently matched because using
the “don’t care (X)” feature of TCAM can efficiently reduce
data entries as illustrated in Fig. 3(b). This is because the
match is verified regardless of the search data by the “don’t
care (X)” feature. The priority encoder outputs the index of
the first matched (high priority) entry and encodes this index
into binary format for retrieving the corresponding next state
from the memory array. The input pointer is advanced to the
next input character and the current state register is set to the
initial state unless there is a matched entry in the TCAM. If no

Fig. 4. Wildcard patterns in traditional TCAM-based search engines.
(a) Construct finite automation for predefined patterns. Transitions to state 0
are omitted. (b) TCAM/memory entries in traditional TCAM search engines.

data need to be detected in the packets, the process will be
terminated.

C. Restrictions of Single Active State

In regular expression matching, regular expressions, which
consist of wildcard patterns and regular patterns (no wildcards
inside), can be used to construct state machines to recognize
input strings [23], [24]. Fig. 4 illustrates the state machine
of predefined patterns and the corresponding TCAM/memory
entries for traditional TCAM-based search engines. In tra-
ditional TCAM-based search engines, one active state for
tracking and one state transition lookup in search operations
are sufficient to recognize regular patterns [25], [26]. However,
in wildcard pattern matching, infinite possible match strings
are generated because of a wildcard that can repeat any
number of arbitrary characters (zero, one, or many) as shown
in Fig. 4. Therefore, when the border state is reached in
wildcard pattern matching, the following strings, which are
composed of an arbitrary number of characters, need to be
detected.
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Fig. 5. Limitations of single activation in traditional TCAM-based search
engines. (a) Traditional TCAM-based search engines. (b) Ideal search engines.

Fig. 5 illustrates the limitations of recognizing input strings
in traditional TCAM-based search engines. An example of
traversal in search engines with input string “shhise” is shown
in Fig. 5(a). After processing two input characters “sh,” the
wildcard pattern {sh.∗e} become a recognizable target in the
matching process and border state “4” is reached. Then, when
the next input strings are input to the state machine, the match
is not only detected in the follow-up of the wildcard pattern
which is recognized but also traversed in the other patterns.

For example, if the next input character is “h,” extra patterns
such as {her, his, he.∗rs} need to be added in the match-
ing process. This is because the following input strings are
unpredictable, which may or may not be matched with other
predefined patterns. In this case, the recognizable target will be
changed from {sh.∗e} to {his, her, her.∗rs}, where the priority
of state “1” is higher than state “4” in the TCAM-based search
engines, as shown in Fig. 5(a). The wildcard pattern {sh.∗e}
will be eliminated from the recognizable target because one
active state tracks only one possible situation in the matching
process. Hence, even though the following input string is “e,”
the wildcard pattern {sh.∗e} cannot be matched because this
pattern is not the recognizable target in the matching process.
We cannot traverse the match in the existing matching process,
which is limited by the number of active states for tracking
and state transition lookup in traditional TCAM-based search
engines.

Fig. 5(b) shows that multiple active states are required to
track and multiple state transition lookups are needed for accu-
racy in wildcard pattern matching. With multiple activations,
the wildcard pattern {sh.∗e} is not eliminated from the recog-
nizable target and the patterns {sh.∗e, his, her, her.∗rs} will be
recognized concurrently in the matching process. Therefore,
the patterns in the input strings can be recognized in ideal
search engines that have multiple activations. We therefore
propose a novel architecture, separated TCAM search engine

architecture, to resolve the constraint of single activation for
traversing all possible matches.

III. EFFICIENT SEPARATED TCAM SEARCH ENGINES

In this section, we first describe a new wildcard-pattern
matching architecture, separated TCAM search engine archi-
tecture, which combines two traditional TCAM search engines
and a simultaneous matching engine. It has accurate traversal
and detects all possible matches to achieve fast and scalable
regular expression matching with wildcard patterns. The pro-
posed architecture utilizes the unique parallel and wildcard
matching capabilities of TCAM to recognize input strings,
unlike the existing solutions that use memory lookup method-
ology to determine the match by sequential memory access.
Next, we describe a simultaneous patter matching scheme
that employs discrete-FA to recognize wildcard patterns in the
proposed architecture. The prefix and suffix state machines in
the discrete-FA can be searched independently for detecting
all possible matches of wildcard patterns. Finally, a cluster
encode method is proposed to ensure that follow-up patterns
can accurately traverse all possible matches by a unique key
without ambiguity.

A. Hardware Architecture
In the proposed architecture, simultaneous pattern matching

methodology is proposed to recognize wildcard patterns in
regular expressions to resolve architecture restrictions in tra-
ditional TCAM-based search engines. The proposed separated
TCAM search engine consists of three major components,
which includes two small isolated TCAM search engines
and a simultaneous matching engine, as shown in Fig. 6.
We define a state flag, a key, and a segment ID, which serve
as the simultaneous pattern matching methodology of each
state in each search engine. In our observations, we find that
using two active states with two transitions were sufficient
to recognize wildcard patterns in the simultaneous pattern
matching methodology. Therefore, two isolated search engines
are used to implement different state machines that are con-
structed by the prefix segment and suffix segment of patterns.
This means that the state machine of the prefix segment and
suffix segment can be searched concurrently. This is plotted
in Fig. 6(a) and (b).

1) Simultaneous Matching Engine: The proposed simulta-
neous matching engine consists of three major components as
shown in Fig. 6(c). The first component is a search comparator,
which is used to determine the actions of the key according
to the state of the flag, where the states include abandon,
search, write, or out-match. The second component is a key
matching engine that is used to store the key and compare
the stored key with the search key in a TCAM array. For
wildcard pattern matching, the corresponding key of the accept
state (stored key) will be stored for the next operation, which
is the match case of the prefix state machine. On the other
hand, the corresponding key of the accept state in the match
case of the suffix state machine (search key) is used to
search the stored key in the simultaneous matching engine.
In Fig. 6(c), if the search result is matched, the wildcard
pattern will be detected. The key feature of this approach is
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Fig. 6. Separated TCAM search engines. TCAM array for (a) prefix and (b) suffix state machine. (c) Search status is decided by simultaneous matching
engine.

Fig. 7. Construct discrete-FA for predefined patterns. (a) Patterns are divided by wildcard (∗). (b) Prefix state machine. (c) Suffix state machine.

that it uses another small TCAM to process the search results
of the prefix state machine and the suffix state machine to
resolve the wildcard-pattern matching problem. The operation
of wildcard pattern matching will be discussed in more detail
in Section III-C.

The third component is a counting constraints monitor to
update the counter of the stored key according to the state
flag. As mentioned earlier, the wildcard of the wildcard pattern
can be replaced by any number of arbitrary characters in the
input string. Thus, we define a counter in the key matching
engine to serve as the counting constraints of each stored
key, which limits the lifetime of wildcard patterns that is
recognized. The counter of the stored key which is used
to tolerate the characters because of a wildcard during the
process of recognizing the pattern determines the eviction
operation for the stored key. When the counter of the stored
key does not equal zero, the counter is decremented for the
counting constraints. If the counter of the stored key equals
zero, the engine makes space for the incoming stored key by
evicting this key. The segment ID is used to ensure that each
segment of a multiwildcard pattern is sequentially matched
in the input strings. The operation of multiwildcard pattern
matching will be discussed in more detail in Section IV.

B. Single Wildcard Patterns in Discrete-FA

One challenge in recognizing wildcard patterns in
TCAM-based search engines is to identify precisely only one

active state with single transition in each search operation that
negatively affects detecting all possible matches. We know
that using more active states with more state transitions can
traverse a greater number of possible matches. It is impossible
to have variable active states to track because of the limitations
of hardware implementation. Therefore, a hardware search
engine is required that can detect all possible situations with
fixed active states to search for wildcard pattern matching.
As mentioned before, all possible matches of a wildcard
pattern are generated by a wildcard. However, the fundamental
match condition of wildcard pattern matching is satisfied only
if the prefix and suffix segments of the wildcard patterns
are sequentially matched in input strings, irrespective of the
number of characters inserted between the prefix segment and
the suffix segment. On the other hand, we also need to address
the possibility of matches with other predefined patterns in an
arbitrary number of characters that are inserted between the
prefix segment and the suffix segment during the process of
recognizing the wildcard pattern.

Based on the above observations, we find that an architec-
ture consisting of two active states with two state transitions in
each search operation is sufficient for accurate traversal and for
detecting two possible ways of match in the regular expression
matching. For constructing state machines in discrete-FA,
the predefined patterns, which consist of wildcard patterns and
regular patterns, can be divided into two segments (prefix and
suffix) with a wildcard at the beginning of constructing state
machines, as shown in Fig. 7(a). To increase the complexity
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of pattern matching, we added two extra wildcard patterns
{hi.∗rs, he.∗e} in the predefined patterns. After the partitioning
of wildcard patterns, a wildcard pattern {sh.∗e} can be trans-
formed to two regular patterns {sh, e}. In the original regular
patterns {he, his}, all the elements of patterns belong to the
prefix segment because there is no wildcard inside the patterns.
On the other hand, the forward elements which are partitioned
by wildcard {sh, he} are the subpatterns of the prefix segment.
In contrast, the remaining elements of wildcard patterns {e, rs}
belong to the suffix segment in the discrete-FA. Next, two
state machines for the prefix segment and the suffix segment
were constructed independently for the proposed architecture,
as shown in Fig. 7(b) and (c).

In the discrete-FA, for matching each input character, the
prefix state machine is used to detect the possible matches of
the original regular patterns and the prefix segment of wildcard
patterns. On the other hand, the suffix state machine is used
to detect the matches of regular patterns obtained from the
suffix segment of wildcard patterns. Therefore, the match can
be traversed in two possible ways in this matching process.
However, the search results of the prefix state machine and the
suffix state machine need to be processed in advance because
one of them is not the match in the wildcard patterns. The
process of the key matching will be discussed in more detail
in the following section.

C. Simultaneous Pattern Matching
To distinguish between the search status of the search

operation in discrete-FA, we defined several new state status
such as transition state, relay state, prefix accept state, and
suffix accept state, which serve as the search operation in
pattern recognition. During the state machine construct, each
state is marked to a different status, which corresponds to the
nature of the discrete-FA, as illustrated in Fig. 7(b) and (c).
In the prefix state machine, states “6” and “7” are marked to
the prefix accept state, which is the pattern matching state in
the regular pattern {her, his}. The relay state, such as states
“2,” “4,” and “5,” is very important in the discrete-FA, which
is used to link the prefix segment and the suffix segment in
the wildcard pattern matching process. When the relay state is
reached in the matching process, corresponding actions are
activated for wildcard pattern matching. In this phase, the
corresponding key (stored key) of the wildcard pattern will be
wrote to the key matching engine for the next phase matching
process.

Next, in the suffix state machine, states “2” and “3” are
marked to the suffix accept state, which is the pattern matching
state in the wildcard pattern. If the suffix accept state is
reached, the corresponding key (search key) will be used
to search the stored key in the key matching engine. When
the search result is matched, the wildcard pattern will be
recognized. Furthermore, the remaining states of the prefix
state machine and the suffix state machine are marked as
the transition state, which is only used for state transition.
The corresponding actions of state status and TCAM/memory
entries of the discrete-FA in simultaneous pattern matching are
illustrated in Figs. 8 and 9. The key assignment of patterns will
be discussed in more detail in Section III-D.

Fig. 8. Data entries for prefix and suffix state machine. (a) TCAM/memory
entries for prefix state machine (b) TCAM/memory entries for suffix state
machine.

Fig. 9. Corresponding actions of state status in discrete-FA.

Fig. 10 shows the state transitions for recognizing input
strings. After processing each input character, the correspond-
ing actions of the state will be activated to determine the
following operations in the simultaneous matching engine.
For example, after processing the two input characters “sh,”
the relay state “4” is reached and the corresponding action
is activated to write the key in the key matching engine for
the next phase matching process. After processing the input
string “rhe,” action 3 is activated to search the corresponding
key with the stored key in the key matching engine. If there
is a match at the output, a stored key exists in this case.
On the other hand, action 4 is activated concurrently,
in which the corresponding key is written to the key matching
engine because of the character “e.” After processing an input
character “r,” the pattern {her} is recognized by action 2. After
processing the input string “rs,” action 3 is activated to search
the corresponding key with the stored key in the key matching
engine and then the pattern {he.∗rs} is recognized. According
to this process, regular patterns and wildcard patterns can be
recognized by this methodology because it not only could
detect a match in the recognized pattern but also could
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Fig. 10. Simultaneous pattern matching for input strings in the separated TCAM search engine architecture.

Fig. 11. Issues of key assignment. (a) SN. (b) BM.

traverse other possible matches in other patterns. Therefore,
our proposed method utilizes two TCAM engines to represent
prefix and suffix state machines, which reduces the number of
active states to O(1) for processing each character.

D. Resolve Ambiguity in Key Assignment

Another challenge in implementing simultaneous pattern
matching methodology is to identify the fixed number of stored
keys and search keys in each pattern in the memory array that
negatively impact on key assignment. In the ClamAV antivirus
signature, there are two special situations: the same prefix pat-
tern combined with different suffix patterns and different prefix
patterns combined with the same suffix pattern. Figs. 11 and 12
illustrate the issues of key assignment by using two con-
ventional encode methods. In serial number encode (SN),
although the key size is very short (1000 wildcard patterns
only need 10 bits to present), an ambiguity problem will arise
because the keys are merged by using the “don’t care (X)”
feature of TCAM. This results in a recognition error in pattern
matching. New patterns “hi.∗rs, he.∗e” are created for pattern
matching in addition to the predefined patterns. In contrast,
although the ambiguity problem can be avoided in the bitmap
encode (BM), the key size is another serious problem. If there

Fig. 12. Scheme of cluster encode.

are 1000 wildcard patterns in predefined patterns, each key
requires 1000 bits to present in this encoding method.

To avoid ambiguity problems and key size problems,
we propose a new key assignment method, cluster encode,
to encode possible postfix pattern by a unique key ensures that
follow-up patterns can accurately traverse all possible matches
with limited hardware resources. In the proposed encoding
method, the key is partitioned into three parts: a cluster ID,
a prefix group ID, and a serial number, as shown in Fig. 12.
The cluster ID and serial number use the serial number
encoding to reduce the key size and the prefix group ID uses
the bitmap encoding to avoid ambiguity problems because of
the merging process of the keys. The key assignment flow and
a corresponding example of the proposed encoding method are
illustrated in Figs. 13 and 14, respectively.

The regular patterns will not be assigned any key in
the proposed encoding method, which does not require the
processing of the match result in advance in the simultaneous
matching method, as shown in Figs. 13(a)–(h) and 14(a)–(h).
On the other hand, the proposed method clusters wildcard
patterns from the prefix segment and the suffix segment
by accommodating the same prefix pattern combined with
different suffix patterns and different prefix patterns combined
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Fig. 13. Key assignment flow of the cluster encode.

Fig. 14. Key assignment by the proposed flow.

with the same suffix pattern. If there is no relationship between
the wildcard patterns, the different cluster ID are assigned
to each wildcard pattern {sh.∗rs, hi.∗e} as illustrated in
Figs. 13(b) and (c) and 14(b) and (c). When the suffix segment
of the new pattern {he.∗rs} is the same as the previous
pattern’s suffix segment {sh.∗rs}, the pattern has the same
cluster ID as plotted in Figs. 13(d) and 14(d).

However, when the new pattern {sh.∗e} is read for key
assignment, all the keys of wildcard patterns that are assigned
before need to be checked for accuracy in pattern match-
ing. First, the wildcard patterns {sh.∗e, sh.∗rs} have the
same cluster ID because of the same prefix segment “sh.”
This means that this pattern need to be contained in the
same cluster by the proposed flow as plotted in Figs. 13(e)

Fig. 15. (a) Construct discrete-FA for multiwildcard patterns. (b) Prefix state
machine. (c) Suffix state machine. (d) TCAM/Memory entries for prefix state
machine. (e) TCAM/Memory entries for suffix state machine.

and 14(e). Next, the key of the previous pattern {hi.∗e} is
reassigned, in which the suffix segment “e” is the same as
the prefix segment of the current pattern {sh.∗e}, as shown
in Figs. 13(f) and 14(f). This signifies that those patterns
need to be contained in the same cluster and the key of the
pattern {hi.∗e} needs to be reassigned by the proposed flow
as illustrated in Figs. 13(g) and 14(g). In addition, patterns
with previously assigned keys are checked to see whether
the suffix segment is the same as the current pattern’s suffix
segment. If that is the case, we need to reassign the cluster ID,
prefix group ID, and serial number of previous patterns, as
plotted in Fig. 13(i). Although the prefix group ID requires
more bits to present with bitmap encoding to avoid ambiguity
problems, the total key size is no longer a serious problem.
This is because the related wildcard patterns with the same
prefix segment or suffix segment are collected in a cluster.

IV. MULTIWILDCARD PATTERN

To recognize multiwildcard patterns, the proposed archi-
tecture is needed to modify with a minor extension. The
key design difference is that several corresponding actions
are complemented for matching follow-up segments of the
wildcard pattern. This is done to recognize the segment of the
wildcard pattern in the simultaneous pattern matching method-
ology and to ensure that each segment of the multiwildcard
pattern is sequentially matched in the input strings.

In the proposed design, the prefix and suffix segments that
are used to recognize the input strings are matched with
predefined patterns and with the follow-up of the recognized
wildcard patterns, respectively. Hence, all elements of the
wildcard pattern, except the elements before the first wildcard,
can be placed in the suffix segment to recognize, as shown
in Fig. 15(a). For example, a multiwildcard pattern {a.∗b.∗c}
can be transformed to three regular patterns {a, b, c}. The
first element “a” belongs to the prefix DFA and the other
elements “b” and “c” belong to the suffix DFA. The new
field, segment ID, is used for identifying which segments are
recognized by “b” or “c” in the matched sequence. Next,
the two state machines for the prefix and suffix segments
are constructed independently for the proposed architecture,
as shown in Fig. 15(b) and (c).
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Fig. 16. Example for multiwildcard matching.

Fig. 16 shows an example of the state transitions for
recognizing input strings in multiwildcard pattern matching.
The example shows traversal in search engines with the input
string “adcbec.” After processing two input characters “ad”
in the prefix segment, the corresponding key and segment ID
{001, 1} and {002, 1} are written to the key matching engine,
respectively. Next, when the following string matches “c” in
the suffix segment, the corresponding data {001, 2} is used
to search in the key matching engine. There is a mismatch in
the key matching engine because the search data {001, 2} and
stored data {001, 1} are different. When the subsequent string
matches “b” in the suffix segment, the corresponding data
{001, 1} is used to search in the key matching engine. If there
is a match, the segment ID in the key matching engine will
be modified to {001, 2} for the next search. After processing
an input character “e,” the pattern {d.∗e} is recognized by the
proposed design. Finally, when the subsequent input string is
“c,” the wildcard pattern {a.∗b.∗c} is recognized because the
search data {001, 2} and stored data {001, 2} are the same.
Thus, the multiwildcard pattern is recognized by adding a new
segment ID in the proposed technique.

V. EXPERIMENTAL RESULTS

We endeavored the following efforts to evaluate our design:
first, we developed several simulators, which construct the
transition tables for DFA, NFA, and discrete-FA, separated
search engine architecture for simultaneous pattern matching,
and provided a sophisticated key assignment method for pat-
tern matching. Second, we implemented a synthetic workload
generator to generate several workloads, which is based on
BigDataBench [27]. BigDataBench includes several big data
workloads with varying data inputs, which not only covers
broad application scenarios but also includes diverse data
sets. Third, we extracted patterns from a ClamAV antivirus
database, and then inserted to the workloads for evaluating
the proposed design, including 1518 wildcard patterns and
28 862 regular patterns [28].

During the inspection, the synthetic workloads are generated
to be examined by different FAs to evaluate their performance
and energy consumption. The detailed information of the
workloads is presented in Table I. Since the proposed design is

TABLE I

INFORMATION OF WORKLOADS

TABLE II

COMPARISON OF DFA, NFA, AND DISCRETE-FA

for wildcard pattern matching, we do not compare our design
with other types of methodologies that are orthogonal and
complementary to our design, such as state compression [25]
and transition compression [29], [30]. In this paper, we utilize
these algorithms to reduce storage requirement. The space
complexity of the proposed design will be discussed in more
detail in the following section.

A. Discrete-FA Versus DFA and NFA

Table II lists the important features of three FA: DFA, NFA,
and discrete-FA. We describe several observations as follows.

1) Implementation: The use of memory lookup in these
methodologies results in slow matching speed in the matching
process because of sequential memory access. In addition,
the matching speed is reduced in advance in the NFA methods
because of multiple active states, which increases the number
of memory access. In contrast, parallel comparison and “don’t
care (X)” search abilities of TCAM are used to achieve high
speed in the proposed design. More importantly, there are only
two active states, which can be operated simultaneously by the
proposed architecture.

2) Active State Effect: In terms of the matching process,
the number of concurrently active states results in O(N)
memory access to process each character in the input strings.
In the NFA-based methods, the number of active states is vari-
able because of the nondeterministic features of the automata,
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Fig. 17. TCAM capacity evaluation with variable wildcard patterns.

which depend on the number of wildcard patterns. As the
number of active states increases, the memory access and
comparison operations also increase in the matching process
because each input character requires more than one search
for detecting all possible matches. In contrast, in the proposed
method, we use two isolated state machines to represent
discrete-FA, which limits the complexity of the number of
active states for processing each character to O(1). Therefore,
each input character can be examined immediately in the
proposed matching process.

3) Space Complexity: Using the “don’t care (X)” feature
to minimize space consumption is a well-studied problem in
TCAM search engines such as covered state encoding and
CompactDFA [25], [29]. In this paper, we compress the data
entries of discrete-FA by utilizing the covered state encoding,
which has a superior performance to reduce TCAM capacity
requirement. Although the proposed design uses an extra
TCAM array in the key matching engine to process the search
results for wildcard pattern matching, the space consumption
of the design that uses other approaches will linearly increase
with the number of patterns.

Considering these observations, we note that discrete-FA
inherits all the advantages of DFA and NFA, which include
parallel search ability, high matching speed, low space com-
plexity, and limited active states for wildcard pattern matching.
However, it has a disadvantage that a key matching engine is
required to process the search results of automata.

B. Evaluation of Key Matching Engine

This paper makes our proposed method a viable alternative
for pattern matching because of small TCAM requirements in
a key matching engine. To evaluate the TCAM requirement of
the key matching engine, we inserted wildcard patterns in the
workloads, which were extracted from the ClamAV antivirus
database, and then replaced the wildcard with an arbitrary
number of characters to estimate and analyze the TCAM
capacity requirement in the proposed design. Fig. 17 shows
that we only needed a 3-kbyte TCAM array to serve the
wildcard pattern matching in our design with variable wildcard
patterns in the workloads. This is because the key length
is dramatically reduced by our proposed design, as listed
in Table III. In the worst case, all stored keys of wildcard

TABLE III

COMPARISON OF KEY ASSIGNMENT METHODS

TABLE IV

PARAMETERS OF S-TCAM AND nvTCAM

TABLE V

PARAMETERS OF SRAM AND RRAM

patterns are stored in key matching engine for pattern match-
ing, we only need a 7-kbyte TCAM to serve the wildcard
pattern matching in our design. As a result, the proposed
design needs a small overhead to efficiently and accurately
recognize wildcard patterns. The size of the hardware depends
on the number of stored keys and different lifetimes of stored
keys for pattern matching across all traces and all simulations
in applications.

C. Performance and Energy Consumption

For IoT applications in embedded environments, regular
expression by traditional memory lookup implementation
will result in nondeterministic computation overhead in
NFA-based methods. All memory/TCAM module parameters
for this experiment, as presented in Tables IV and V, such
as read/search latency and energy were adopted from previ-
ous studies [31], [32], which include SRAM-based TCAM
(S-TCAM), SRAM, and RRAM. The simulation that includes
TCAM arrays, priority encoders, and memory arrays is done
by HSPICE.

1) Performance Evaluation: One challenge in implement-
ing NFA-based methods by memory lookup implementation
may be to identify at runtime the number of the memory
access and sequential comparisons that negatively impact
system execution time. For each input character, these methods
usually require many concurrent comparison operations and
memory access. When the number of the memory access
is increased, it will stall comparison operations and then
increase system execution time for pattern matching. The
TCAM-based implementations can search each TCAM macro
concurrently to avoid sequential accessing data for comparison
and to have deterministic computations to reduce system
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Fig. 18. Execution time reduction of TCAM search engines by using
discrete-FA.

execution time. In terms of search operations, the results of
execution time from memory lookup implementation indicate
serious overhead compared with the TCAM-based architec-
ture. Fig. 18 shows that in comparison with hybrid-FA [21],
using the proposed solution can reduce 76%–88% execution
time depending on workload behaviors. The dramatically
decreasing execution time of the proposed design is caused by
the reducing the mass of sequential memory access and com-
parison operations in the matching process due to the parallel
search abilities of TCAM. The improvement of execution time
in nonvolatile TCAM (nvTCAM) search engines is less than
S-TCAM search engine because the access latency of non-
volatile memory is longer than SRAM, as shown in Table V.
Although using nvTCAM has 4% overhead in the system
execution compared with the S-TCAM search engine, the total
energy is reduced because of nonvolatility. The energy con-
sumption of TCAM search engines will be discussed in more
detail in Section VI.

2) Search Energy Improvement: The patterns were extracted
from the ClamAV antivirus database in system evaluation for
various applications such as IoT, wireless sensor networks, and
wearable devices because not all signatures were suitable in
embedded systems. Therefore, we need different capacities to
store them for different amounts of signatures in various appli-
cations. In addition, three implementations, memory lookup,
S-TCAM and nvTCAM, were used to implement for energy
exploration. Fig. 19 shows that the energy consumption can
be broken down into TCAM search engine energy, processor
energy, memory energy, and leakage. Compared with hybrid-
FA (using SRAM), the S-TCAM can save the total energy
up to around 39%. On the other hand, in the dynamic energy
consumption, S-TCAM can save around 23% compared with
hybrid-FA. This is due to the reduction of the number of
memory access to retrieve data for comparison because the
comparison of TCAM macros occurs in parallel.

VI. DISCUSSION

A. Using Nonvolatile TCAM in Network Security

Nonvolatile memory (RRAM) and nvTCAM have been
designed to achieve a small area and fast/low-power wake-
up operations. Their high-density property and competitive
search time with near-zero leakage energy are more suitable

Fig. 19. Energy comparison of using discrete-FA.

to implement in embedded systems compared to S-TCAM.
As presented in Tables IV and V, the parameters of RRAM
and nvTCAM (RCSD-4T2R) are implemented with Industrial
Technology Research Institute’s 90-nm process with the back
end of line RRAM by HSPICE [32]. Fig. 18 shows that using
nvTCAM can reduce execution times by 66% on average.
The improvement of using nvTCAM is affected by the long
write/read latency of nonvolatile memory. Although using nvT-
CAM has 6% overhead compared with S-TCAM, the overall
energy is reduced because of nonvolatility in the total energy
consumption.

In the energy evaluation, even though the TCAM array
energy consumption of nvTCAM was higher than that of the
S-TCAM, the bulk of the energy consumption in the nvTCAM
array was determined by the number of search operations, due
to the high costs of the search operation. Using nvTCAM in
the proposed architecture can result in a reduction in total
energy usage of around 75%, compared with S-TCAM, as
shown in Fig. 19. This is because nvTCAMs, which have been
designed to achieve low standby power, can reduce leakage
consumption by 91%.

B. Applicability and Future Work

With significant advancements in technology scaling,
the proposed design can be used not only in network secu-
rity but also in broader applications such as wireless sensor
networks, biometrics, and vehicle license plate recognition.
In the applications, regular expressions are a key function to
fast analyze unstructured textual data. Our work fully utilizes
the features of TCAM and does not need a specific architecture
modification for supporting regular expression matching.

In the future work, saving the energy consumption and
storage space by improving the energy consumption and per-
formance by eliminating priority encoders will be considered.
In the TCAM-based search engines, the priority encoders are
needed to obtain the first match (highest priority) entry in each
search operation. This implies that data should be stored in an
order with sorting their lengths. The restrictions on ordering
result in increased energy consumption and decreased perfor-
mance for data updates and search operations. For discarding
priority encoders, previous works used the length information
of the matched data to decide the longest prefix match data.
In the future, we will explore the effectiveness of our proposed
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TABLE VI

COMPARISON OF REGULAR EXPRESSION MATCHING METHODOLOGY WITH THE OTHERS

separated TCAM search engine integrated to those designs for
reducing energy consumption in update and search operations
for an energy-efficient TCAM-based search engine design.

VII. PRIOR MATCHING METHODOLOGY

In the past, several studies have explored the memory
problem of DFA or the speed problem of NFA by employing
the characteristics of memory or algorithm [33]–[36]. These
studies can be categorized into four directions based on
their implementation platforms: regular expression grouping,
transition compression, hybrid construction, and TCAM-based
search engines. Table VI summarizes the brief comparison of
the previous works.

A. Regular Expression Grouping
Yu et al. [37] first used the grouping method to divide the

given set of regular expressions into the fewest groups through
greedy heuristics. This can efficiently improve matching speed
and reduce memory requirement because DFA of each group is
run independent of the regular expression. Rohrer et al. [38]
found the optimal distribution of regular expressions as an
energy minimization problem and aimed to optimize storage
efficiency and performance by distributing regular expressions
to a limited number of scan engines. Majumder et al. [39]
proposed an agglomerative clustering technique to optimize
the tradeoffs among overall DFA size and processing cost by
DFA state caching and regular expression grouping. However,
the utility of regular expression is not suitable in practice,
which depends on the scale and complexity of the given
regular expression set. More importantly, the DFA state explo-
sion problem, which is caused by a single regular expression,
cannot be handled.

B. Transition Compression
To reduce the memory consumption of DFA, several

studies have explored elimination of redundant states and
transitions of automata by compression methods [40]–[43].
Bremler-Barr et al. [29] presented an efficient encoding

scheme, CompactDFA, to compress the DFA entries and elim-
inate all cross transitions in the TCAM-based implementation
by constructing the common suffix tree. Yun et al. [25]
proposed covered state encoding that eliminates all the failure
transitions of Aho-Corasick NFA in a TCAM-based solution.
Kumar et al. [30] proposed a technique for parsing regular
expressions using delayed input DFA, which can reduce mem-
ory requirements by using default transitions. The compression
ratios of these solutions are not very stable because they rely
on the internal structure of the automaton tree in patterns.

C. Hybrid Construction

Becchi et al. [21] proposed a hybrid-FA solution, hybrid-
FA, to improve matching speed and prevent state explosion,
through single head-DFA and tail-NFAs. Becchi et al. [22]
explored the recognition ability of Perl-compatible regular
expressions, which include character repetitions and back-
references by extended-hybrid-FA. Liu et al. [18] presented
an efficient matching algorithm, called dual FA, to use linear
FA (LFA) to represent the NFA states and an extended
DFA (EDFA) to represent the remainder. The performance of
the matching process in the EDFA part is good because of the
DFA features. In contrast, the performance of the matching
process in the LFA part is greatly reduced because of the
nondeterministic feature of NFA. Yang et al. [20] proposed
semideterministic FA (SFA) that offer an effective tradeoff
between the computation complexity of NFA and the space
complexity of DFA for regular expression matching. The
SFA-based solution clusters all NFA states into the fewest sub-
sets by using “state grouping” heuristics. However, the algo-
rithm is quite complex for judging state grouping and it is
infeasible to implement large-scale regular expression match-
ing in practice.

D. TCAM-Based Search Engines

In the early studies, the TCAM-based search engines were
designed for plain string matching, which are based on the
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“don’t care (X)” search ability [44]–[46]. Yu et al. [44]
proposed a multibyte multiple-string matching algorithm with
limited support for wildcards in the TCAM-based search
engines. Weinsberg et al. [46] presented a TCAM-based
solution, rotating TCAM algorithm, to achieve speedup of
matching multiple patterns in a single operation. Recently,
TCAM-based search engines have been proposed as a promis-
ing approach for regular expression matching because of
fast and scalable multipattern matching. These TCAM-based
search engines run a unique state machine instance for each
flow, which can be used to monitor patterns spread across
multiple packets.

Several studies have explored regular expression matching
issues for regular expression matching by employing the
characteristics of TCAM. Alicherry et al. [16] presented a
classical TCAM-based search engine architecture with a state-
encoding scheme for the pattern matching algorithm in small
TCAMs, which is based on the Aho–Corasick algorithm.
Meiners et al. [14] used the optimization methods that include
transition sharing, table consolidation, and variable striding
to reduce TCAM space consumption and improve regular
expression matching speeds for a regular expression matching
algorithm. Peng et al. [15] evaluated wildcard pattern matching
by TCAM-based search engines using a chain-based DFA
deflation method, which exploits the structural connection
between NFA and DFA. A priori assumption of these designs
is that a DFA can be built for a given wildcard pattern of
regular expression. Unfortunately, for wildcard patterns in
practice, building a DFA with a reasonable number of states
is impossible because in a wildcard, any number of arbitrary
characters can be repeated.

Previous studies of regular expression matching in the
TCAM-based search engines have focused on how to reduce
memory requirements and improve the speed of search oper-
ation. Different from the existing matching algorithms, our
work fully exploits the features of discrete-FA and TCAM
to build a foundation for both the recognition ability of
wildcard patterns and linear scalability by partition of regular
expression.

VIII. CONCLUSION

This paper proposes an efficient separated search engine
based on the detailed analysis of wildcard pattern properties.
It indicates that two active states with two transitions are
sufficient for wildcard-pattern matching problems. A simple
architecture modification based on simultaneous matching
methodology is proposed as an alternative. This exhibits
accurate traversal and traverses all possible matches by two
separated engines to represent discrete-FA. We used the cluster
encoding method to resolve problems of ambiguity and key
size for the simultaneous pattern matching method. In our
experimental results, we only needed a small sized TCAM
array in the key matching engine for various applications
in the proposed design. By adopting TCAM-based solutions,
S-TCAM and nvTCAM, the search energy reduction is approx-
imately 39% and 84%, respectively, because memory access
and comparison operations are relatively reduced in the TCAM

array. We also demonstrated that the proposed design is an
attractive option for wildcard pattern matching in embedded
systems.
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